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Technical Section

Technical Objectives
This project focused on the fabrication, study and understanding of electronic devices that incorporate
nanometer scale magnetic elements. Developments in this area have great potential for ultra-fast, high
density, compact, non-volatile and radiation hard magnetic memory, which eliminates moving parts from
computers and other portable electronic devices while greatly reducing power consumption. The specific
aim of this project period was to investigate the effect of spin-polarized currents on magnetization
dynamics in device structures with sub-100 nm lateral dimensions and systematically varied composition.

Technical Approach
Our technical approach includes: 1) device nanofabrication; 2) high sensitivity magnetotransport and
magnetic measurements; 3) high speed electronic measurements to study magnetization dynamics and
switching; and 4) micromagnetic modeling of device characteristics

Progress

Nanofabrication: We have developed a technique to fabricate and electrically contact sub-100 nm lateral
dimension magnetic thin film elements and multilayers, which does not require ion-milling of the layers
(that can induce damage) or extensive (and expensive) processing. The technique employs electron-beam
lithography to define an aperture in a thin metal stencil mask (see figure below). A magnetic layer is then
grown by electron beam evaporation through the aperture and onto the surface below the stencil. Samples
with lateral sizes as small as 30 nm x 60 nm have been fabricated and studied. This technique can be
used to integrate metallic magnetic electrodes with semiconductor nanostructures. We have also
developed capabilities to systematically vary material composition across wafers using a computer
controlled stencil mask in ultra-high vacuum. This latter capability enables efficient studies of the effects
of material and layer thicknesses on device characteristics. This nanofabrication technique is presented in
an article we published in the Journal of Applied Physics 93, 6859 (2003).
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Figure Left: a) Scanning electron microscopy (SEM) image of an array of submicron apertures in a thin metal stencil
mask. This new nanostencil process enables fabrication of high density arrays of electrically contacted nanomagnets.
b) Transmission electron microscopy (TEM) image of a magnetic nanopillar grown by electron beam evaporation in
a nanostencil. The graphic illustrates that the pillar has close to vertical sidewalls. Right: Magnetotransport studies of
Co/Cu/Co nanopillars. (a) A magnetic field can switch the device from a high resistance state (with antiparallel
alignment of magnetization of the layers) to a low resistance state (of parallel alignment). (b) A spin-current can also
switch the device to a high resistance state even in large applied fields. The graphic shows that in a field of 2.2 T a
current of 30 mA leads magnetization reversal. This illustrates the efficiency of spin-currents for control of
magnetization dynamics

Spin procession and reversal of the magnetization driven by a spin-polarized current: In small magnetic
bilayer devices we have found that a spin-polarized current can induce large angle precession and
reversal of the magnetization of a magnetic element even in large applied magnetic fields. A paper on
these experiments was published in Physical Review Letters 91, 067203 (2003).

Current-induced excitations in Single Magnetic Layer Devices: Current-induced excitations have been
observed for the first time in magnetic nanostructures that only have a single thin magnetic layer. It was
generally believed that two magnetic layers were necessary to create excitations, one to polarize the
current and the second to respond to the spin-polarized current. A paper on these experiments was
published in Physical Review Letters 93, 176604 (2004).

Current-induced switching in Single Magnetic Layer Devices: Bistable resistance states and switching
have been observed in structures with only a single nanomagnetic layer (sub-100 nm,). This result shows
that a single magnetic layer can act as a memory element. The switching is between different domain
configurations of the layer. These results were reported in Applied Physics Letters 88, 162506 (2006).

Bipolar high field spin-current driven magnetic excitations: A series of experiments on Co/Cu/Co
bilyaers showed that non-uniform spin-wave instabilities compete with uniform magnetic excitations. A
paper on this was published in Physical Review B. RC 71, 140403 (2005). A more recent study shows
how these non-uniform spin-wave excitations can be suppressed by properly engineering the contact
layers; Journal of Applied Physics 99, 08G511 (2006). This is important for device applications as
uniform magnetic excitations are desirable.

Spin-transfer induced precessional magnetization reversal: We discovered a method to induce
magnetization reversal of nanomagnets in sub-100 ps time scales using spin-polarized currents. A US
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Patent has been granted for this invention: "High Speed Low Power Magnetic Devices Based on Current
Induced Spin-Momentum Transfer," inventors: A. D. Kent, E. G. Garcia and B. Oezyilmaz, Assignee:
NYU, U.S. Patent No. 6,980,469. (see also, the attached patent report). A paper was also published:
Applied Physics Letters 84, 3897 (2004)

High speed mneasurements and ferromagnetic resonance studies: We have setup a high speed electrical
measurement system to characterize the short time scale response of magnetic devices that employs a 50
GHz sampling oscilloscope. New equipment was also ordered to enable fast pulse generation and noise
measurements up to 50 GHz. This setup was used to condtuct studies of the magnetization damping and
magnetic characteristics of ultra-thin magnetic layers. Initial results are published in Journal of Applied
Physics 99, 08N503 (2006) and a second paper has been submitted to Physical Review B (preprint at:
cond-mat/0602243)

Imnprovements in our UHVsystein: We have upgraded our UHV thin film deposition system so that we
can deposit materials through fine scale metal shadow masks, which we can change in-situ (under
computer control) without breaking vacuum. This can be used to deposit electrical gates and test various
material combinations and surface preparations in integrating metallic and semiconducting materials.
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2. B. Oezyilmaz, A. D. Kent, D. Monsma, J. Z. Sun, M. J. Rooks and R. H. Koch, "Current-induced
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Ferromagnetic Layer Nanopillars," Physical Review Letters 93, 176604 (2004)

5. M. Zimmler, B. Oezyilmaz, W. Chen, A. D. Kent, J. Z. Sun, M. Rooks and R. Koch, "Current-
induced effective magnetic fields in Cu/Co/Cu Nanopillars," Physical Review B 70, 184438 (2004)

6. B. Ozyilmaz, A. D. Kent, M. J. Rooks and J. Z. Sun,, "Bipolar high field excitations in Co/Cu/Co
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polycrystalline Cobalt ultrathin films," Journal of Applied Physics 99, 08N503 (2006)

9. W. Chen, A. D. Kent, M. J. Rooks, N. Ruiz, J. Z. Sun, "Spin-transfer-induced excitations in bilayer
magnetic nanopillars at high fields: The effects of contact layers," Journal of Applied Physics 99,
08G511 (2006)

10. B. Ozyilmaz and A. D. Kent, "Current-induced switching in single ferromagnetic layer nanopillar
junctions," Applied Physics Letters 88, 162506 (2006).
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Patents
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"High Speed Low Power Magnetic Devices Based on Current Induced Spin-Momentum Transfer,"

inventors: A. D. Kent, E. G. Garcia (E. del Barco) and B. Oezyilmaz, Assignee: NYU, U.S. Patent

No. 6,980,469.
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